26 research outputs found

    Survey of Filter Bank Multicarrier (FBMC) as an efficient waveform for 5G

    Get PDF
    Filter bank multicarrier is a multicarrier scheme. It is a modulation technique to overcome the Inter Symbol Interference (ISI) and Inter Carrier Interference (ICI). The inter symbol interference is a big challenges in network systems. FBMC is a modification of orthogonal frequency division multiplexing (OFDM). In OFDM cyclic prefix are used for robustness of signal, but by using cyclic prefix orthogonal frequency division multiplexing has some drawbacks. To overcome the drawback of OFDM, use the Filter Bank Multicarrier (FBMC). It provides the efficient bandwidth. To handle this situation modulation techniques are used and other new methods will be used in future. One of them is Filter Bank Multicarrier; it provides high efficiency rather than OFDM

    MAKE-IT—A Lightweight Mutual Authentication and Key Exchange Protocol for Industrial Internet of Things

    Get PDF
    Continuous development of the Industrial Internet of Things (IIoT) has opened up enormous opportunities for the engineers to enhance the efficiency of the machines. Despite the development, many industry administrators still fear to use Internet for operating their machines due to untrusted nature of the communication channel. The utilization of internet for managing industrial operations can be widespread adopted if the authentication of the entities are performed and trust is ensured. The traditional schemes with their inherent security issues and other complexities, cannot be directly deployed to resource constrained network devices. Therefore, we have proposed a strong mutual authentication and secret key exchange protocol to address the vulnerabilities of the existing schemes. We have used various cryptography operations such as hashing, ciphering, and so forth, for providing secure mutual authentication and secret key exchange between different entities to restrict unauthorized access. Performance and security analysis clearly demonstrates that the proposed work is energy efficient (computation and communication inexpensive) and more robust against the attacks in comparison to the traditional scheme

    Analysis of Image Transmission using MIMO-Alamouti Space-Time Encoding

    Get PDF
    Rapid increase in requirements of high speed transmission of multi-media information resulted in development of MIMO systems. MIMO systems have emerged as the most efficient methodology for the high speed robust data transmission. In this paper, the performance of Alamouti Space-time block coded MIMO system is analysed using the metric of efficient image transmission over the Rayleigh fading channel. The transmitted image is modulated using M-PSK modulation technique, and its reconstructed version is plotted as an output function. Zero-forcing equalization is done for the detection of the original symbols from the received symbols which are influenced by the multipath fading and the channel noise. The results for image transmission using 2×1 and 2×2 Alamouti STBC are evaluated for different SNR values. The inverse relationship between the SNR and BER in the results depict that the high value of SNR and receiver antenna leads to enhanced system efficiency with reduced BER and distortion less recovery of image. It is very evident from the analysis of the received images that as we increase the SNR or the number of the antennas at the receiving side, the quality of the received image improves for the same channel environment. During the analysis, it is also found that increasing the number of bits forming one symbol in M-PSK modulation increase the BER which is undesirable. Thus, trade-off between the number of antenna, SNR and the M value of PSK is an essential requirement for achieving enhanced performance

    Implementation of message authentication code using DNA-LCG key and a novel hash algorithm

    Get PDF
    With the introduction of electronic form of data, the need for an automatic system of security to protect the integrity of data while being transferred from one place to another is required. This is especially the case for a network in which the systems are accessed over a public network or internet. Security mechanisms involve the use of more than one algorithm. They further require that the participants should possess a secret key, which raises issues about creation, distribution and proper usage of these keys. The most effective technique used in provisioning security is Message Authentication Code (MAC) which helps in preserving integrity. MAC involves the use of secret key along with a hash algorithm. In this paper, we present an implementation of MAC using a secret key created by Deoxyribonucleic Acid (DNA) and random output sequence of Linear Congruential Generator (LCG). The hash algorithm used is made more robust by adding complexity to the traditional SHA-160. The presented scheme RMAC (Robust Message Authentication Code) is tested on National Institute of Science and Technology (NIST) test suite for random numbers, avalanche criteria and resistance towards network attacks. The results reveal that the scheme is efficient and is applicable for a variety of security demanding environments
    corecore